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Abstract. In the resonance region we have precisely determined the electromagnetic properties of the
∆(1232)-resonance, in particular the E2/M1 ratio REM = (−2.5±0.1)%. For pion electroproduction recent
experimental data from Mainz, Bates, Bonn and JLab for Q2 up to 4.0 (GeV/c)2 have been analyzed with
the isobar model MAID. The extracted E2/M1 ratio shows, starting from a small and negative value
at the real photon point, a clear tendency to cross zero, and becomes positive with increasing Q2. This
is a possible indication of a very slow approach toward the pQCD region. The C2/M1 ratio near the
photon point is found as RSM (0) = (−6.5 ± 0.5)%. At high Q2, the absolute value of the ratio is strongly
increasing, a further indication that pQCD is not yet reached. The electromagnetic-transition form factors
of the ∆(1232) excitation are parameterized and fitted to the electroproduction data. This also shows a
zero-crossing of the electric form factor G∗

E at Q2 = 3.6 ± 0.5 (GeV/c)2.

PACS. 13.40.Gp Electromagnetic form factors – 13.60.Le Meson production – 14.20.Gk Baryon resonances
with S = 0 – 25.20.Lj Photoproduction reactions

1 Introduction

The determination of the quadrupole excitation strength
E

(3/2)
1+ in the region of the ∆(1232)-resonance has been

the aim of considerable experimental and theoretical ac-
tivities. Within the harmonic-oscillator quark model, the
∆ and the nucleon are both members of the symmetrical
56-plet of SU(6) with orbital momentum L = 0, positive
parity and a Gaussian wave function in space. In this ap-
proximation the ∆ may only be excited by a magnetic
dipole transition M (3/2)

1+ [1]. However, in analogy with the
atomic hyperfine interaction or the forces between nucle-
ons, also the interactions between the quarks contain a
tensor component due to the exchange of gluons. This hy-
perfine interaction admixes higher states to the nucleon
and ∆ wave functions, in particular d-state components
with L = 2, resulting in a small electric-quadrupole tran-
sition E(3/2)

1+ between nucleon and ∆ [2–4]. In addition,
quadrupole transitions are possible by mesonic and glu-
onic exchange currents [5,6]. Therefore an accurate mea-
surement of E(3/2)

1+ is of great importance in testing the
forces between the quarks and, quite generally, models of
nucleons and isobars.

In a constituent quark model with two-body meson
exchange currents, Buchmann and Henley [6] show that
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the nucleon-to-∆ transition quadrupole moment is propor-
tional to the mean-squared radius of the neutron charge
distribution. In a study with three different models, a
quark model, a collective model and a pion cloud model,
they find in addition that the quadrupole moment of the
∆ itself is proportional to r2n, Q

∆+

0 = (1 · · · 5)r2n and that
also the nucleon would have an intrinsic (unobservable)
quadrupole moment of Qp

0 = (−1 · · · − 5)r2n. Therefore, in
these models the ∆-resonance would be an oblate object
while the nucleon would be prolate. Since it is extremely
difficult to measure the quadrupole moment of the ∆, the
only observable quadrupole moment is the transition mo-
ment from nucleon to ∆, which can be extracted from
the recent E/M analysis of Mainz or Brookhaven, with a
mean value of QN∆ = −(0.095± 0.01) fm2 (see below).

The E2/M1 ratio, REM = E
(3/2)
1+ /M

(3/2)
1+ has been

predicted to be in the range −3% ≤ REM < 0% in
the framework of constituent quark [2,4,5,7], relativized
quark [8,9] and chiral-bag models [10,11]. Considerably
larger values have been obtained in Skyrme models [12]. In
the small-ε expansion of chiral perturbation theory a de-
tailed study of the ∆-nucleon transition form factors has
also been performed [13]. However, at the photon point
the transition moments are fixed by counter terms and
the predictions are given as a low-Q2 behaviour of the
form factors. A comparison with the experimental form
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factors is however difficult as first of all the validity is lim-
ited to very small Q2, and secondly the calculations yield
complex form factors that do not correspond to the usual
definition of a Breit-Wigner resonance but more to the
definition of a resonance pole of the T -matrix. A first lat-
tice QCD calculation resulted in a small value with large
error bars (−6% ≤ REM ≤ 12%) [14]. And in a very recent
calculation considering both quenched and unquenched 2-
flavour theory [15], the REM and RSM ratios have been
calculated at low Q2 in a remarkable precision. Both ra-
tios are in the range of (−2 · · · − 3)% and are comparable
with the experimental analysis. However, the connection
of the calculations with the experimental data is not so
evident. Clearly, the ∆-resonance is coupled to the pion-
nucleon continuum and final-state interactions will lead to
strong background terms seen in the experimental data,
particularly in case of the small E1+ amplitude. The ques-
tion of how to “correct” the experimental data to extract
the properties of the resonance has been the topic of many
theoretical investigations. Unfortunately, it turns out that
the analysis of the small E1+ amplitude is quite sensitive
to details of the models, e.g., nonrelativistic vs. relativis-
tic resonance denominators, constant or energy-dependent
widths and masses of the resonance, sizes of the form fac-
tor included in the width, etc. In other words, by changing
these definitions the meaning of resonance vs. background
changes, too.

In order to study the ∆ deformation, pion photopro-
duction on the proton has been measured by the LEGS
Collaboration [16] at Brookhaven and by the A2 Collabo-
ration [17] at Mainz using transversely polarized photons,
i.e. by measuring the polarized photon asymmetry Σ. In
particular, the cross-section dσ‖ for photon polarization
in the reaction plane turns out to be very sensitive to the
small E1+ amplitude. Assuming, for simplicity, that only
the P -wave multipoles contribute, the differential cross-
section is

dσ‖
dΩ

=
q

k
(A‖ +B‖ cosΘπ + C‖ cos2Θπ), (1)

where q and k are the pion and photon momenta and Θπ

is the pion emission angle in the c.m. frame. Neglecting
the (small) contributions of the Roper multipoleM1−, one
obtains [17]

C‖/A‖ ≈ 12REM , (2)

because the isospin- 32 amplitudes strongly dominate the
cross-section for π0 production.

In addition to pπ0, also the charged-pion channel
nπ+ has been measured at MAMI and LEGS, allowing
a complete isospin separation. With high precision, it was
shown by Beck et al. [18] that the ratios determined from
only π0 production agree very well with the ratio of the
isospin-(3/2) multipoles, obtained after a full isospin sepa-
ration. This result will be very important for all forthcom-
ing electroproduction experiments that are purely based
on the π0p channel.

In order to obtain the C2/M1 ratio and the form fac-
tors as functions of Q2, pion electroproduction has been

Table 1. E2/M1 ratios for Q2 = 0 from different analyses.

REM (%) Reference

−2.54 ± 0.10 Hanstein et al. [19]
−2.5 ± 0.1stat. ± 0.2syst. Beck et al. [18]
−3.07 ± 0.26stat.+syst. ± 0.24mod. Blanpied et al. [16]
−2.0 ± 0.2 Arndt et al. [20]

−2.5 ± 0.5 PDG 2002 estimate [21]

studied. At Mainz, Bonn, Bates and JLab different exper-
iments have been performed, without polarization as well
as single and double polarization.

While the experiments at Mainz and Bates measured
at Q2 ∼ 0.1 GeV2 in order to get the C2/M1 ratio close
to the photon point, the experiments at JLab and Bonn
were motivated by the possibility of determining the range
of momentum transfers where perturbative QCD (pQCD)
would become applicable. In the limit of Q2 → ∞, pQCD
predicts [22] that only helicity-conserving amplitudes con-
tribute, leading to REM = E(3/2)

1+ /M
(3/2)
1+ → 1 and RSM =

S
(3/2)
1+ /M

(3/2)
1+ → const.

2 Photo- and electroproduction

According to the Watson theorem, at least up to the two-
pion threshold, the ratio E(3/2)

1+ /M
(3/2)
1+ is a real quantity.

However, it is not a constant but even a rather strongly
energy-dependent function. If we determine the resonance
position as the point, where the phase δ(3/2)

1+ (W =M∆) =
90◦, we can define the so-called “full” ratio

REM =
E

(3/2)
1+

M
(3/2)
1+

∣∣∣∣∣
W=M∆

=
ImE(3/2)

1+

ImM (3/2)
1+

∣∣∣∣∣
W=M∆

. (3)

We note that this ratio is identical to the ratio obtained
with the K-matrix at the K-matrix pole W = M∆. This
can be seen by using the relation between the T - and the
K-matrix, T = K cos δeiδ and, consequently, K = ReT +
ImT tan δ. Therefore, at W =M∆ we find

K(E(3/2)
1+ )/K(M (3/2)

1+ ) = ImE(3/2)
1+ /ImM (3/2)

1+ . (4)

The recent, nearly model-independent value of the Mainz
group atW =M∆ = 1232 MeV is (−2.5±0.1±0.2)% [18]
in excellent agreement with our dispersion theoretical cal-
culation that gives (−2.54± 0.10)%, see table 1.

As was demonstrated in different approaches [19,23],
the precise E2/M1 ratio is very sensitive to the spe-
cific database used in the fit. Therefore, the SAID value,
obtained with the full database is rather low (−1.5%
in the previous and −2.0% in the most recent analy-
sis) and the values obtained with the LEGS differential
cross-sections are twice as large, around −3%. In order
to clearly distinguish the uncertainties arising from dif-
ferent databases from model errors arising from different
theoretical approaches used in the partial-wave analysis,
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a BRAG [24] study group was formed in 2000/2001 to an-
alyze an benchmark dataset of pion photoproduction. Al-
together, 7 groups participated in this multipole analysis
and determined independently the helicity amplitudes of
the ∆ excitation and the E/M ratio. The results were re-
ported on the NSTAR2001 workshop in Mainz and showed
a surprisingly small spread in REM of only ±0.27, which
is of about the same size as the systematical uncertainty
in the experimental analysis. Details of this study can be
found in ref. [25].

For our analysis of pion electroproduction we will use
the dynamical model DMT and the unitary isobar model
MAID. In the dynamical approach to pion photo- and
electroproduction [26], the t-matrix is expressed as

tγπ(E) = vγπ + vγπ g0(E) tπN (E) , (5)

where vγπ is the transition potential operator for γ∗N →
πN , and tπN and g0 denote the πN t-matrix and free
propagator, respectively, with E ≡W the total energy in
the CM frame. A multipole decomposition of eq. (5) gives
the physical amplitude in channel α [26],

t(α)
γπ (qE , k;E + iε) = exp (iδ(α)) cos δ(α) ×

[
v(α)

γπ (qE , k)

+P
∫ ∞

0

dq′
q′2R(α)

πN (qE , q′;E) v
(α)
γπ (q′, k)

E − EπN (q′)

]
, (6)

where δ(α) and R(α)
πN are the πN scattering phase shift and

reaction matrix in channel α, respectively; qE is the pion
on-shell momentum and k = |k| is the photon momentum.
The multipole amplitude in eq. (6) manifestly satisfies the
Watson theorem and shows that the γπ multipoles depend
on the half-off-shell behaviour of the πN interaction.

In a resonant channel like (3,3) in which the ∆(1232)
plays a dominant role, the transition potential vγπ consists
of two terms,

vγπ(E) = vB
γπ + v∆

γπ(E) , (7)

where vB
γπ is the background transition potential and

v∆
γπ(E) corresponds to the contribution of the bare ∆.

It is well known that for a correct description of the
resonance contributions we need, first of all, a reliable
description of the nonresonant part of the amplitude. In
MAID2000, the S, P , D and F waves of the background
contributions are complex numbers defined in accordance
with the K-matrix approximation,

tB,α
γπ (MAID) = exp (iδ(α)) cos δ(α)vB,α

γπ (W,Q2). (8)

From eqs. (6) and (8), one finds that the difference be-
tween the background terms of MAID and of the dynami-
cal model is that off-shell rescattering contributions (prin-
cipal value integral) are not included in MAID. To take
account of the inelastic effects at the higher energies, we
replace exp (iδ(α)) cos δ(α) = 1

2 (exp (2iδ
(α))+1) in eqs. (6)

and (8) by 1
2 (ηα exp (2iδ(α))+1), where ηα is the inelastic-

ity. In our actual calculations, both the πN phase shifts

δ(α) and inelasticity parameters ηα are taken from the
analysis of the GWU group [27].

Following ref. [28], we assume a Breit-Wigner form for
the resonance contribution AR

α (W,Q
2) to the total multi-

pole amplitude,

AR
α (W,Q

2) = ĀR
α (Q

2)
fγR(W )ΓRMR fπR(W )
M2

R −W 2 − iMRΓR
eiφ, (9)

where fπR is the usual Breit-Wigner factor describing the
decay of a resonance R with total width ΓR(W ) and phys-
ical mass MR. The expressions for fγR, fπR and ΓR are
given in ref. [28]. The phase φ(W ) in eq. (9) is introduced
to adjust the phase of the total multipole to equal the
corresponding πN phase shift δ(α). Because φ = 0 at
resonance, W = MR, this phase does not affect the Q2-
dependence of the γNR vertex.

The resonance couplings for α =M,E, S are parame-
terized in the following way:

Ā∆
α (Q2) = X∆

α (Q2) Ā∆
α (0)

k

kW
F (Q2) ,

F (Q2) = (1 + β Q2) e−γQ2
GD(Q2) , (10)

where k = (Q2 + (W 2 −m2 −Q2)2/(4W 2))1/2 is the vir-
tual photon momentum, kW = (W 2 − m2)/(2W ) is the
equivalent photon momentum or energy and GD(Q2) =
1/(1 +Q2/0.71)2 is the usual dipole form factor. The pa-
rameters β and γ were determined by fitting Ā∆

M (Q2) to
the data for G∗

M [28,29]. In the case of MAID we ob-
tained β = 0 and γ = 0.21 (GeV/c)−2. In MAID2000
the coefficients X∆

α (Q2) are kept constant but can be
used as free parameters in single-Q2 fits. The values of
Ā∆

M (0) and Ā∆
E (0) were determined by fitting to the mul-

tipoles obtained in the recent analyses of the Mainz [19]
and GWU [20] groups.

With the definition of eq. (9), the background am-
plitudes of the P33 channel vanish exactly at the res-
onance position and the resonance amplitudes become
purely imaginary. In this case the helicity amplitudes
A1/2, A3/2, S1/2, which are the characteristic numbers for
e.m. resonance excitation, are directly related to the res-
onance multipoles at W = M∆ (see, e.g., PDG94 or
ref. [30]),

A1/2 = − 1√
6
a∆(M̄ (3/2)

1+ + 3Ē(3/2)
1+ ) ,

A3/2 = − 1√
2
a∆(M̄ (3/2)

1+ − Ē(3/2)
1+ ) ,

S1/2 = − 2√
3
a∆S̄

(3/2)
1+ ,

with a∆ =
(
4πq∆M∆Γ∆

kWm

)1/2

. (11)

Here we use the notation M̄ (3/2)
1+ = ImM (3/2)

1+ (W = M∆),
etc. In MAID2000 these are identical to Ā∆

α (Q2). Using
this definition we can now define the N → ∆ transition
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form factors,

G∗
M (Q2) = b∆M̄

(3/2)
1+ (Q2) = b∆Ā∆

M (Q2) ,

G∗
E(Q

2) = −b∆Ē(3/2)
1+ (Q2) = −b∆Ā∆

E (Q2) ,

G∗
C(Q

2) = −b∆S̄(3/2)
1+ (Q2) = −b∆Ā∆

C (Q2) ,

with b∆ =
(
8m2q∆Γ∆

3αemk2
∆

)1/2

(12)

and αem = 1/137, Γ∆ = 115 MeV. k∆ and q∆ are the
photon and pion momenta at W =M∆.

The e.m. transition form factors may also be expressed
in terms of the helicity amplitudes A1/2, A3/2 and S1/2,
which are determined at the resonance position W =M∆

and are functions of Q2,

G∗
M = −c∆(A1/2 +

√
3A3/2) ,

G∗
E = c∆

(
A1/2 − 1√

3
A3/2

)
,

G∗
C =

√
2c∆S1/2 ,

with c∆ =
(

m3kW

4παM∆k2
∆

)1/2

. (13)

The E/M and S/M ratios can then be defined as

REM = −G
∗
E

G∗
M

=
A1/2 − 1√

3
A3/2

A1/2 +
√
3A3/2

,

RSM = −G
∗
C

G∗
M

=

√
2S1/2

A1/2 +
√
3A3/2

. (14)

At this point we note that there is not yet a commonly
accepted definition of the G∗

C form factor in the litera-
ture. Here we choose a definition which leads to a relation
for the S/M ratio similar to the E/M ratio and which
leads to a similar behaviour for low Q2. However, other
conventions exhibit different normalizations at Q2 = 0.

Furthermore, the helicity asymmetry A∆
1 can be ex-

panded for small E/M ratios,

A∆
1 =

A2
1/2 −A2

3/2

A2
1/2 +A

2
3/2

≈ −1
2
+ 3REM +O(R2

EM ) (15)

which is practically constant and varies only between
−0.58 at Q2 = 0 and −0.50 at Q2 ≈ 4 GeV2. This is in big
contrast to the next important resonances of pion electro-
production, the D13(1520) and the F15(1680), which show
a very rapid cross-over from −1 at Q2 = 0 to +1 already
for Q2 ≈ 2 GeV2.

At Q2 = 0 the form factors can be related to
transition moments, a magnetic-dipole moment and an
electric-quadrupole moment. Furthermore, as the reso-
nance production is far away from the Siegert limit (ω =
258.7 MeV), the quadrupole moments from E2 and C2
transitions can be different. First we express the form fac-
tors in the spherical notation GM1, GE2, GC2, which lead

Table 2. Recent experimental data of π0 electroproduction on
the proton. The Mainz experiment was done with beam and
recoil polarization, all others are unpolarized measurements.

Laboratory Q2 (GeV2) Wcm (MeV) θcm
π (degrees)

Mainz [31] 0.121 1232 180
Bates [32] 0.126 1152–1322 0–38
Bonn [33] 0.630 1153–1312 5–175
JLab, Hall A [34] 1.0 1110–1950 146–167
JLab, Hall B [35] 0.4–1.8 1100–1680 26–154
JLab, Hall C [36] 2.8, 4.0 1115–1385 25–155

Fig. 1. The Q2-dependence of the magnetic N → ∆ transition
form factor G∗

M divided by three times the nucleon dipole form
factor. The solid and dashed curves are the results of the MAID
and dynamical model analyses, respectively. The data at Q2 =
1.0, 2.8 and 4.0 (GeV/c)2 are from our own analysis. For other
data see ref. [37].

to the standard definition of transition moments in the
limit of Q2 = 0,

G∗
M (0) =

√
2m
3M∆

GM1(0) =
√
m

M∆
µN∆ ,

G∗
E(0) =

√
2m
3M∆

GE2(0) = −mkW

6

√
m

M∆
QN∆ . (16)

With eqs. (14),(16) the quadrupole transition moment can
then be expressed in terms of the magnetic transition mo-
ment and the E/M ratio at the real photon point and
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Fig. 2. The Q2-dependence of the E/M ratio REM at W =
1232 MeV. The solid and dashed curves are the MAID and
dynamical model results, respectively. Experimental data at
Q2 = 0 from ref. [17]. In the upper panel, the point at Q2 = 1.0
is from our analysis to the JLab Hall A data [34], the point
at Q2 = 0.1 is from Bates [32], the circle at Q2 = 0.63
from Bonn [33] and the points at Q2 = 0.4 · · · 0.9 from JLab
Hall B [35]. In the lower panel all points show our own single-
Q2 analysis.

evaluated from the Mainz multipole analysis,

QN∆ =
6µN∆

mkW
REM (0)

= −(0.0846± 0.0033) fm2 . (17)

3 Data analysis

The unitary isobar model MAID was used to analyze
recent differential cross-section data on p(e, e′p)π0 from
Mainz, Bates, Bonn and JLab. These data cover a Q2

range from 0.1 to 4.0 (GeV/c)2 and an energy range
1.1 < W < 2.0 GeV, see table 2. In a first attempt we
have fitted each data set at a constant Q2 value sepa-
rately. This is similar to a partial-wave analysis of pion
photoproduction and only requires additional longitudi-
nal couplings for all the resonances. The Q2 evolution of
the background, Born terms and vector meson exchange,
is described with a standard dipole form factor. Our re-
sults for the G∗

M form factor are shown in fig. 1.

Fig. 3. The Q2-dependence of the S/M ratio RSM at W =
1232 MeV. The points at Q2 = 0.1 are from Mainz [31] (circle)
and Bates [32] (square). Other notations are the same as in
fig. 2.

It is worth noting that in the definition of eq. (17),
G∗

M (0)/3 takes a value of 1 to an accuracy of 1%. This
very precise value is extracted from the recent Mainz
experiment [18]. With this number we can also deter-
mine a very precise N → ∆ magnetic transition moment,
µN∆ = 3.46± 0.03 in units of nuclear magnetons.

Our extracted values for REM and RSM and a com-
parison with the results of refs. [33,35,36] are shown in
figs. 2 and 3, respectively. The main difference between
our results and those of ref. [36] is that our values of REM

show a clear tendency to cross zero and change sign as Q2

increases. This is in contrast with the results obtained in
the original analysis [36] of the data which concluded that
REM would stay negative and tend toward more negative
values with increasing Q2.

In addition to our single-Q2 fits, we have also per-
formed a global fit by parameterizing the transition form
factors with simple Q2-dependent functions. Most suitable
we found the following ansatz:

XM (Q2) = (1 + αMQ
2)e−βM Q2

,

XE(Q2) = (1 + αEQ
2)e−βEQ2

,

XC(Q2) = (1 + αCQ
6)e−βCQ2

. (18)
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Table 3. Result of our Q2-dependent fit to the data of Bonn,
and JLab Hall A,B,C.

M1 E2 C2

α −0.0049 ± 0.009 −0.278 ± 0.035 0.0410 ± 0.007

β 0.016 ± 0.008 0 0.119 ± 0.025

Fig. 4. The electromagnetic-transition form factors of the
∆(1232) excitation in our parametrization of eqs. (10),(12),(18)
as a result of the fit to the electroproduction data. The solid,
dashed and dash-dotted lines show the G∗

M , G∗
E and G∗

C form
factors, respectively.

At Q2 = 0 we have fixed the multipoles to the values
determined in our photoproduction analysis and fitted the
6 parameters αi, βi of the Q2 evolution to the electropro-
duction data of Bonn and JLab Hall A,B,C. The result
of our fit (table 3) is shown in figs. 1-4. Similarly to our
single-Q2 fit we find a zero-crossing of the electric form
factor at the position Q2 = 3.6± 0.5 (GeV/c)2.

4 Conclusions

At the resonance position, where the phase passes 90◦, we
obtain an E2/M1 ratio of REM = (−2.5± 0.1)%.

For pion electroproduction, we have analyzed recent
Bonn and JLab data for electroproduction of the∆(1232)-
resonance via p(e, e′p)π0 with our unitary isobar model
MAID, which gives an excellent description of the existing
database. In contrast to previous findings, our model indi-
cates that REM , starting from a small and negative value
at the real photon point, actually exhibits a clear tendency
to cross zero and changes sign as Q2 increases. It will be
most interesting to have data at yet higher momentum
transfer in order to see whether such a trend continues,
which would be a sign for a rather slow approach towards
the pQCD region. Furthermore, the absolute value of RSM

is strongly increasing, which indicates that the pQCD pre-
diction of RSM → constant is not yet reached.

We wish to thank R. Beck, R. Gothe and T. Bantes for their
contribution on the experimental data. This work was sup-
ported in part by NSC under Grant No. NSC89-2112-M002-
038, by Deutsche Forschungsgemeinschaft (SFB443) and by a
joint project NSC/DFG TAI-113/10/0.
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